[ Pobierz całość w formacie PDF ]

Stephen W. Hawking

KRÓTKA HISTORIA CZASU

OD WIELKIEGO WYBUCHU DO CZARNYCH DZIUR

 

SPIS TREÅšCI

Podziękowania  ........................... 7

Wprowadzenie   ........................... 11

1. Nasz obraz wszechświata ................... 13

2. Czas i przestrzeń   ....................... 25

3. Rozszerzający się wszechświat ................ 44

4. Zasada nieoznaczoności.................... 60

5. Cząstki elementarne i siły natury ............... 68

6. Czarne dziury   ......................... 83

7. Czarne dziury nie są czarne   ................. 100

8. Pochodzenie i los wszechświata   ............... 113

9. Strzałka czasu  ......................... 136

10. Unifikacja fizyki ......................... 145

11. Zakończenie   .......................... 159

Albert Einstein  ........................... 163

Galileusz   .............................. 165

Newton   ............................... 167

Słownik  ............................... 169

Indeks ................................ 173

 

 

 

 

Książkę tę poświęcam Jane

 

 

 

PODZIĘKOWANIA

Postanowiłem napisać popularną książkę o czasie i przestrzeni po wygłoszeniu na Uniwersytecie Harvarda w 1982 roku cyklu wy­kładów Loeba. Istniało już wtedy wiele książek o wczesnym wszech­świecie i czarnych dziurach, niektóre z nich były bardzo dobre, jak Pierwsze trzy minuty Stevena Weinberga, niektóre bardzo złe — tytu­łów nie wymienię. Miałem jednak wrażenie, że w żadnej z nich nie rozważono naprawdę pytań, które skłoniły mnie samego do zajęcia się równocześnie badaniami kosmologicznymi i kwantowymi: Skąd wziął się wszechświat? Jak i kiedy powstał? Czy będzie miał koniec, a jeśli tak, to jaki? Są to pytania ważne dla nas wszystkich, ale współczesna nauka stała się tak skomplikowana technicznie, że tylko nieliczni spe­cjaliści potrafią posługiwać się aparatem matematycznym, niezbędnym przy omawaniu tych problemów. Niemniej jednak podstawowe idee dotyczące początku i losu wszechświata można przedstawić bez użycia matematyki, w sposób zrozumiały dla ludzi bez wykształcenia przy­rodniczego. Tego właśnie próbowałem dokonać w mej książce. Czy­telnik osądzi, na ile mi się powiodło.

Ktoś mi powiedział, że każde równanie, jakie umieszczę w książce, zmniejszy liczbę sprzedanych egzemplarzy o połowę. Postanowiłem wobec tego, że nie będzie żadnych równań. W końcu jednak użyłem jednego: jest to słynny wzór Einsteina E=mc2. Mam nadzieję, że nie odstraszy on połowy moich potencjalnych czytelników.

Pecha w życiu miałem tylko pod jednym względem: zachorowałem na ALS, czyli stwardnienie zanikowe boczne. Poza tym jestem szczę­ściarzem. Pomoc i wsparcie, jakie otrzymuję od mojej żony, Jane, oraz dzieci: Roberta, Lucy i Tima, umożliwiły mi prowadzenie w miarę normalnego życia i odniesienie sukcesów zawodowych. Miałem szczęście, że wybrałem fizykę teoretyczną, ponieważ polega ona na czystym my­śleniu, a zatem inwalidztwo nie było poważnym utrudnieniem w jej uprawianiu. Bardzo pomocni byli mi zawsze wszyscy, bez wyjątku, moi koledzy.

W pierwszym, “klasycznym" okresie mojej kariery zawodowej współ­pracowałem głównie z Rogerem Penrose'em, Robertem Gerochem, Bran-donem Carterem i George'em Ellisem. Jestem im bardzo wdzięczny za pomoc i wspólnie osiągnięte rezultaty. Wyniki uzyskane w tym okresie przedstawione są w książce The Large Scalę Structure of Spacetime (Wieloskalowa struktura czasoprzestrzeni), którą napisałem wspólnie z Ellisem w 1973 roku. Nie namawiam czytelników do szukania w niej dodatkowych informacji: jest w najwyższym stopniu techniczna i zupeł­nie nieczytelna. Mam nadzieję, że dzisiaj potrafię pisać w sposób bardziej zrozumiały.

W drugim, “kwantowym" okresie mojej pracy, od 1974 roku, współ­pracownikami moimi byli przede wszystkim Gary Gibbons, Don Page i Jim Hartle. Zawdzięczam wiele im, a także moim doktorantom, którzy pomagali mi w pracy i w sprawach praktycznych. Konieczność dotrzy­mania kroku własnym studentom była dla mnie zawsze znakomitym stymulatorem i, mam nadzieję, uchroniła mnie przed popadnięciem w rutynę.

W pisaniu tej książki pomógł mi bardzo Brian Whitt, jeden z moich studentów. W 1985 roku, po napisaniu pierwszej jej wersji, złapałem zapalenie płuc i w wyniku tracheotomii utraciłem głos. Ponieważ nie mogłem prawie zupełnie porozumiewać się z innymi ludźmi, straciłem nadzieję, że zdołam książkę dokończyć. Brian nie tylko pomógł mi ją poprawić, ale nakłonił mnie także do wypróbowania programu komu­nikacyjnego zwanego Ośrodkiem Życia, podarowanego przez Walta Woltosza z przedsiębiorstwa Words Plus Inc., z Sunnyvale w Kalifornii. Używając tego programu, mogę pisać książki i artykuły, a z pomocą syntetyzatora mowy ofiarowanego przez Speech Plus, też z Sunnyvale, mogę również rozmawiać z ludźmi. David Mason zamontował synte­tyzator i mały komputer na moim fotelu na kółkach. Dzięki temu sy­stemowi mogę teraz porozumiewać się z ludźmi lepiej niż przed utratą głosu. Wiele osób radziło mi, jak poprawić pierwszą wersję tej książki. W szczególności Peter Guzzardi, redaktor z wydawnictwa Bantam Books, przysyłał całe strony pytań i komentarzy dotyczących kwestii, których, jego zdaniem, nie wyjaśniłem należycie. Muszę przyznać, że bardzo mnie zirytowała ta długa lista proponowanych poprawek, ale to on miał rację: jestem pewien, że książka wiele zyskała dzięki jego upo­rowi. Jestem bardzo zobowiązany moim asystentom: Colinowi William-sowi, Davidowi Thomasowi i Raymondowi Laflamme'owi, moim se­kretarkom: Judy Fella, Ann Ralph, Cheryl Billington i Sue Masey, oraz zespołowi opiekujących się mną pielęgniarek. Moja praca nie byłaby możliwa, gdyby koszty badań i wydatki medyczne nie zostały pokryte przez Gonville i Caius College, Radę Badań Naukowych i Inżynieryj­nych, oraz przez fundacje Leverhulme' a, McArthura, Nuffielda i Ralpha Smitha. Jestem im bardzo wdzięczny.

 

20 października 1987 r.

Stephen Hawking

 

 

WPROWADZENIE

Zajęci naszymi codziennymi sprawami nie rozumiemy niemal nic z otaczającego nas świata. Rzadko myślimy o tym, jaki mechanizm wytwarza światło słoneczne, dzięki któremu może istnieć życie, nie zastanawiamy się nad grawitacją, bez której nie utrzymalibyśmy się na powierzchni Ziemi, lecz poszybowalibyśmy w przestrzeń kosmiczną, nie troszczymy się też o stabilność atomów, z których jesteśmy zbu­dowani. Z wyjątkiem dzieci (które nie nauczyły się jeszcze, że nie na­leży zadawać ważnych pytań) tylko nieliczni spośród nas poświęcają dużo czasu na rozważania, dlaczego przyroda jest taka, jaka jest, skąd się wziął kosmos i czy istniał zawsze, czy pewnego dnia kierunek upły­wu czasu się odwróci i skutki wyprzedzać będą przyczyny oraz czy istnieją ostateczne granice ludzkiej wiedzy. Spotkałem nawet takie dzie­ci, które chciały wiedzieć, jak wyglądają czarne dziury, jaki jest naj­mniejszy kawałek materii, dlaczego pamiętamy przeszłość, a nie przy­szłość, jak obecny porządek mógł powstać z pierwotnego chaosu, i dla­czego istnieje wszechświat.

W naszym społeczeństwie większość rodziców i nauczycieli wciąż jeszcze odpowiada na takie pytania wzruszeniem ramion lub odwołuje się do słabo zapamiętanych koncepcji religijnych. Wielu czuje się nie­swojo, borykając się z pytaniami tego rodzaju, gdyż niezwykle wyraźnie obnażają one ograniczenia naszej wiedzy.

Ale nauka i filozofia w znacznym stopniu zawdzięczają swe istnienie takim właśnie pytaniom. Stawia je coraz większa liczba dorosłych i nie­którzy dochodzą czasami do zdumiewających odpowiedzi. Równie od­legli od atomów i gwiazd rozszerzamy granice poznania tak, by objąć nimi i to, co najmniejsze i to, co najdalsze.

Wiosną 1974 roku, na dwa lata przed lądowaniem sondy Yiking na Marsie, uczestniczyłem w spotkaniu zorganizowanym przez Królewskie Towarzystwo Naukowe w Londynie, na którym zastanawialiśmy się, jak szukać życia w kosmosie. W czasie przerwy zauważyłem, że w są­siedniej sali zebrało się o wiele liczniejsze grono. Wszedłem tam wie­dziony ciekawością. Wkrótce zdałem sobie sprawę, że przyglądam się staremu rytuałowi: przyjmowano nowych członków do Królewskiego Towarzystwa, jednej z najstarszych organizacji naukowych na świecie. W pierwszym rzędzie młody człowiek w fotelu na kółkach bardzo powoli wpisywał swoje nazwisko do księgi, w której, na jednej z pier­wszych stron, widnieje podpis Izaaka Newtona. Kiedy wreszcie skoń­czył, rozległy się głośne oklaski; Stephen Hawking był już wtedy postacią legendarną.

Obecnie Hawking jest Lucasian Professor of Mathematics na Uni­wersytecie w Cambridge. Przed nim tytuł ten należał między innymi do Newtona i P.A.M. Diraca, dwóch słynnych badaczy zjawisk w wiel­kich i małych skalach. Jest ich godnym następcą. Krótka historia czasu, pierwsza książka Hawkinga dla laików, powinna z wielu względów spodobać się szerokim kręgom czytelników. W równym stopniu co bo­gata zawartość książki powinna ich zainteresować fascynująca możli­wość poznania dróg, którymi biegnie myśl jej autora. Znajdziemy w niej przedstawione z niezwykłą jasnością problemy, z którymi zmaga się dzisiejsza fizyka, astronomia, kosmologia; znajdziemy w niej również świadectwa odwagi.

Jest to wreszcie książka o Bogu..., a raczej o jego nieobecności. Słowo “Bóg" często pojawia się na tych stronicach. Hawking usiłuje znaleźć odpowiedź na słynne pytania Einsteina, czy Bóg miał swobodę w tworzeniu wszechświata. Próbuje, jak sam stwierdza wprost, zrozu­mieć umysł Boży. To sprawia, że konkluzja — przynajmniej obecna — jest tym bardziej zaskakująca: wszechświat nie ma granic w prze­strzeni, nie ma początku i końca w czasie, nie ma też w nim nic do zrobienia dla Stwórcy.

 

Carl Sagan

Comell University

Ithaca, Nowy York

 

Rozdział       1

 

NASZ OBRAZ WSZECHÅšWIATA

 

Pewien bardzo znany uczony (niektórzy twierdzą, że był to Bertrand Russell) wygłosił kiedyś popularny odczyt astronomiczny. Opo­wiadał, jak Ziemia obraca się dookoła Słońca, a ono z kolei kręci się wokół środka wielkiego zbiorowiska gwiazd, zwanego naszą Galaktyką. Pod koniec wykładu w jednym z końcowych rzędów podniosła się nie­wysoka, starsza pani i rzekła: “Wszystko, co pan powiedział, to bzdura. Świat jest naprawdę płaski i spoczywa na grzbiecie gigantycznego żół­wia". Naukowiec z uśmieszkiem wyższości spytał: “A na czym spo­czywa ten żółw?" Starsza pani miała gotową odpowiedź: “Bardzo pan sprytny, młody człowieku, bardzo sprytny, ale jest to żółw na żółwiu i tak do końca!"

Dla większości ludzi obraz świata jako nieskończonej wieży z żółwi może się wydać śmieszny, ale czemu właściwie uważamy, że sami wie­my lepiej? Co wiemy o wszechświecie i jak się tego dowiedzieliśmy? Jak wszechświat powstał i dokąd zmierza? Czy wszechświat miał po­czątek, a jeśli tak, to co było przedtem? Osiągnięcia fizyki ostatnich lat, umożliwione przez fantastyczny rozwój techniki, sugerują pewne odpowiedzi na te stare pytania. Kiedyś nasze odpowiedzi będą się wy­dawały równie oczywiste, jak oczywiste jest dla nas, że Ziemia obraca się wokół Słońca — albo równie śmieszne jak pomysł wieży z żółwi. Tylko czas (czymkolwiek on jest) pokaże, ile są one warte.

Już 340 lat przed Chrystusem grecki filozof Arystoteles w swej książ­ce O niebie potrafił przedstawić dwa dobre argumenty na poparcie twier­dzenia, że Ziemia jest kulą, a nie płaszczyzną. Po pierwsze, Arystoteles zdawał sobie sprawę, że zaćmienia Księżyca powoduje Ziemia, zasłania­jąc Słońce. Cień Ziemi na Księżycu jest zawsze okrągły, co byłoby uzasadnione tylko wtedy, jeśli Ziemia byłaby kulą. Gdyby Ziemia była pła­skim dyskiem, jej cień na ogół byłby wydłużony i eliptyczny, chyba że zaćmienie zdarza się zawsze wtedy, gdy Słońce znajduje się dokładnie nad środkiem dysku. Po drugie, dzięki swym podróżom Grecy wiedzieli, że jeśli Gwiazdę Polarną obserwuje się z rejonów południowych, to widać ją niżej nad horyzontem niż wtedy, gdy obserwator znajduje się na pół­nocy. (Ponieważ Gwiazda Polarna leży nad biegunem północnym, poja­wia się ona dokładnie nad głową obserwatora stojącego na biegunie, obserwator na równiku widzi ją natomiast dokładnie na horyzoncie). Znając różnicę położenia Gwiazdy Polarnej na niebie, gdy obserwuje się ją w Egipcie i w Grecji, Arystoteles oszacował nawet, że obwód Ziemi wynosi 400 000 stadionów. Nie wiemy, ilu metrom dokładnie odpowiadał jeden stadion, ale prawdopodobnie było to około 180 metrów. Jeśli tak, to Arystoteles popełnił błąd: podany przezeń obwód Ziemi jest dwa razy większy niż przyjmowany przez nas. Grecy znali i trzeci argument prze­mawiający za kulistością Ziemi: gdyby Ziemia nie była kulą, to czemu najpierw widzielibyśmy pojawiające się nad horyzontem żagle statków, a dopiero później ich kadłuby?

Arystoteles uważał, że Ziemia spoczywa, a Słońce, Księżyc, planety i gwiazdy poruszają się wokół niej po kołowych orbitach. Przekonanie to wyrastało z jego poglądów religijno-filozoficznych — zgodnie z ni­mi Ziemia stanowiła środek wszechświata, a ruch kołowy był ruchem najbardziej doskonałym. W drugim wieku Ptolemeusz rozwinął te idee i sformułował pełny model kosmologiczny. Według niego Ziemia znaj­dowała się w środku wszechświata i była otoczona ośmioma sferami niebieskimi, które unosiły Księżyc, Słońce, gwiazdy i pięć znanych wtedy planet (Merkury, Wenus, Mars, Jowisz i Saturn — rys. 1). Aby wyjaśnić skomplikowany ruch planet, Ptolemeusz zakładał, że poruszają się one po mniejszych kołach, których środki przymocowane są do właściwych sfer. Sfera zewnętrzna zawierała gwiazdy stałe, których wzajemne położenie nie zmieniało się, ale które obracały się wspólnie po niebie. Co leżało poza sferą gwiazd stałych, nigdy nie zostało w pełni wyjaśnione, lecz z pewnością obszar ten nie należał do części wszech­świata dostępnej ludzkim obserwacjom.

Model Ptolemeuszowski pozwalał na w miarę dokładne przewidy­wanie położeń ciał niebieskich na niebie. Aby jednak osiągnąć tę do­kładność, Ptolemeusz musiał przyjąć, iż Księżyc porusza się po takiej orbicie, że gdy znajduje się najbliżej Ziemi, jego odległość od niej jest dwukrotnie mniejsza, niż gdy znajduje się najdalej od Ziemi.

Oznacza to, że Księżyc czasem powinien wydawać się dwa razy większy niż kiedy indziej! Ptolemeusz zdawał sobie sprawę z tego problemu, ale mimo to jego model został ogólnie zaakceptowany, choć nie przez wszy­stkich. Kościół chrześcijański uznał go za obraz wszechświata zgodny z Pismem Świętym, ponieważ jego wielkim plusem było pozostawienie poza sferą gwiazd stałych wiele miejsca na niebo i piekło.

Znacznie prostszy model zaproponował w 1514 roku polski ksiądz Mikołaj Kopernik. (Początkowo, zapewne obawiając się zarzutu herezji, Kopernik rozpowszechniał swój model, nie ujawniając, że jest jego twórcą). Według Kopernika w środku wszechświata znajduje się nie­ruchome Słońce, a Ziemia i inne planety poruszają się — wokół niego — po kołowych orbitach. Minął niemal wiek, nim model Kopernika został potraktowany poważnie. Wtedy dopiero dwaj astronomowie — Niemiec, Johannes Kepler, i Włoch, Galileusz, zaczęli propagować teo­rię Kopernika, mimo iż orbity obliczone na jej podstawie nie w pełni zgadzały się z obserwacjami. Śmiertelny cios zadał teorii Arystotelesa i Ptolemeusza w 1609 roku Galileusz, który rozpoczął wtedy obserwa­cje nocnego nieba za pomocą dopiero co wynalezionego przez siebie

teleskopu. Patrząc na Jowisza, Galileusz odkrył, że jest on otoczony przez kilka poruszających się wokół niego satelitów, czyli księżyców. Wynikało z tych obserwacji, że nie wszystkie ciała niebieskie muszą poruszać się bezpośrednio wokół Ziemi, jak uważali Arystoteles i Pto-lemeusz. (Oczywiście, można było nadal utrzymywać, że Ziemia spo­czywa w środku wszechświata, a księżyce Jowisza poruszają się na­prawdę wokół niej, po bardzo skomplikowanej drodze, stwarzając tylko wrażenie, że okrążają Jowisza. Teoria Kopernika była jednak o wiele prostsza). W tym samym czasie Kepler poprawił teorię Kopernika, su­gerując, że planety poruszają się po orbitach eliptycznych, a nie koło­wych (elipsa to wydłużone koło). Po tym odkryciu przewidywane orbity planet zgadzały się wreszcie z obserwacjami.

Dla Keplera orbity eliptyczne były tylko hipotezą (ad hoc) i w do­datku odpychającą, ponieważ elipsy były w oczywisty sposób mniej doskonałe niż koła. Ich zgodność z doświadczeniem stwierdził niemal przez przypadek i nigdy nie udało mu się pogodzić tego odkrycia z jego własną tezą, że planety są utrzymywane na orbitach przez siły magne­tyczne. Wyjaśnienie przyszło znacznie później, w roku 1687, kiedy Sir Izaak Newton opublikował Philosophiae Naturalis Principia Mathema-tica (Matematyczne zasady filozofii przyrody), zapewne najważniejsze dzieło z zakresu nauk ścisłych, jakie zostało kiedykolwiek napisane. Newton zaproponował w nim nie tylko teorię ruchu ciał w przestrzeni i czasie, ale rozwinął również skomplikowany aparat matematyczny potrzebny do analizy tego ruchu. Sformułował także prawo powszechnej grawitacji, zgodnie z którym dowolne dwa ciała we wszechświecie przy­ciągają się z siłą, która jest tym większa, im większe są masy tych ciał i im mniejsza jest odległość między nimi. To ta właśnie siła powoduje spadanie przedmiotów na ziemię. (Opowieść o tym, jakoby inspiracją dla Newtona stało się jabłko, które spadło mu na głowę, jest niemal na pewno apokryfem. Newton wspomniał tylko, że pomysł powszechnej grawitacji przyszedł mu do głowy, gdy “siedział w kontemplacyjnym nastroju" i “jego umysł został pobudzony upadkiem jabłka"). Następnie Newton wykazał, że zgodnie z owym prawem grawitacji Księżyc po­winien poruszać się po elipsie wokół Ziemi, zaś Ziemia i inne planety powinny okrążać Słońce również po eliptycznych orbitach.

Model Kopernika nie zawierał już niebieskich sfer Ptolemeusza, a wraz z nimi zniknęła idea, że wszechświat ma naturalną granicę. Ponieważ wydaje się, że “stałe gwiazdy" nie zmieniają swych pozycji, jeśli pominąć ich rotację na niebie, wynikającą z obrotu Ziemi wokół swej osi, przyjęto jako w pełni naturalne założenie, że są to obiekty podobne do Słońca, tyle że znacznie bardziej od nas oddalone.

Newton zdawał sobie sprawę, że zgodnie z jego teorią grawitacji gwiazdy powinny przyciągać się wzajemnie; należało więc sądzić, że nie mogą one pozostawać w spoczynku. Czy wszystkie one nie powinny więc zderzyć się ze sobą w pewnej chwili? W napisanym w 1691 roku liście do Richarda Bentleya, innego wybitnego myśliciela tych czasów, Newton argumentował, że tak stałoby się rzeczywiście, gdyby liczba gwiazd była skończona i jeśli byłyby one rozmieszczone w ograniczo­nym obszarze. Jeśli natomiast nieskończenie wielka liczba gwiazd jest rozmieszczona mniej więcej równomiernie w nieskończonej przestrzeni, to nie istnieje żaden centralny punkt, w którym mogłoby dojść do owego zderzenia.

Wywód ten stanowi przykład pułapki, w jaką można wpaść, dysku­tując o nieskończoności. W nieskończonym wszechświecie każdy punkt może być uznany za środek, ponieważ wokół niego znajduje się nieskoń­czenie wiele gwiazd. Poprawne podejście do zagadnienia — co stwier­dzono znacznie później — polega na rozważeniu najpierw skończonego układu gwiazd, które spadają na środek tego układu, i postawieniu na­stępnie pytania, co się zmieni, jeśli układ otoczymy dodatkowymi gwiaz­dami równomiernie rozłożonymi w przestrzeni. Zgodnie z prawem cią­żenia Newtona dodatkowe gwiazdy w ogóle nie wpłyną na ruch gwiazd wewnątrz wyróżnionego obszaru, te zatem spadać będą ku środkowi z nie zmienioną prędkością. Możemy dodawać tyle gwiazd, ile nam się podo­ba, i nie zapobiegnie to ich spadnięciu do punktu centralnego. Dziś wie­my, że nie da się skonstruować statycznego modelu nieskończonego wszechświata, w którym siła ciążenia jest zawsze przyciągająca.

Warto zastanowić się przez chwilę nad panującym aż do XX wieku klimatem intelektualnym, który sprawił, że nikt wcześniej nie wpadł na pomysł rozszerzającego się lub kurczącego wszechświata. Przyjmo­wano powszechnie, że wszechświat albo istniał w niezmiennym stanie przez całą wieczność, albo został stworzony w obecnym kształcie w określonej chwili w przeszłości. Przekonanie to, być może, wywo­dziło się z ludzkiej skłonności do wiary w wieczyste prawdy, a może też znajdowano pociechę w myśli, że choć pojedyncze osoby starzeją się i umierają, to jednak wszechświat jest wieczny i niezmienny.

Nawet ci, którzy zdawali sobie sprawę z tego, że zgodnie z Newtonowską teorią grawitacji wszechświat nie mógł być statyczny, nie wpadli na pomysł, że mógłby się on rozszerzać. Zamiast tego usiłowali oni zmienić teorię, przyjmując, że siła ciążenia między bardzo odległy­mi ciałami jest odpychająca. Nie zmieniłoby to w zasadzie ich obli­czeń ruchu planet, ale umożliwiłoby istnienie nieskończonych układów gwiazd w stanie równowagi: przyciąganie pomiędzy bliskimi gwiazda­mi byłoby zrównoważone odpychaniem pochodzącym od gwiazd od­ległych. Jednakże — jak wiemy to obecnie — nie byłaby to równo­waga stała — jeśliby gwiazdy w pewnym obszarze zbliżyły się choćby nieznacznie do siebie, powodując wzmocnienie sił przyciągających, umożliwiłoby to pokonanie sił odpychających i w efekcie gwiazdy ru­nęłyby na siebie. Z drugiej strony, jeśli gwiazdy oddaliłyby się nieco od siebie, to siły odpychające przeważyłyby nad przyciągającymi i spo­wodowałyby dalszy wzrost odległości między gwiazdami.

Wysunięcie kolejnego zarzutu przeciwko modelowi nieskończone­go i statycznego wszechświata przypisuje się zazwyczaj niemieckiemu filozofowi Heinrichowi Olbersowi, który sformułował go w 1823 roku. Faktem jest, że już różni współcześni Newtonowi badacze zwracali uwa­gę na ten problem, a Olbers nie był nawet pierwszym, który zapropo­nował sposób jego rozwiązania. Dopiero jednak po artykule Olbersa zwrócono nań powszechnie uwagę. Trudność polega na tym, że w nie­skończonym i statycznym wszechświecie, patrząc niemal w każdym kierunku, powinniśmy natknąć się wzrokiem na powierzchnię gwiazdy. Dlatego całe niebo powinno być tak jasne jak Słońce, nawet w nocy. Olbers wyjaśniał ten paradoks osłabieniem światła odległych gwiazd wskutek pochłaniania go przez materię znajdującą się między źródłem i obserwatorem. Gdyby jednak tak rzeczywiście było, to temperatura pochłaniającej światło materii wzrosłaby na tyle, że materia świeciłaby równie jasno jak gwiazdy. Jedynym sposobem uniknięcia konkluzji, że nocne niebo powinno być tak samo jasne jak powierzchnia Słońca, byłoby założenie, iż gwiazdy nie świeciły zawsze, ale zaczęły promie­niować w pewnej chwili w przeszłości. W tym wypadku pochłaniająca światło materia mogła nie zdążyć się podgrzać do odpowiedniej tem­peratury albo światło odległych gwiazd mogło do nas jeszcze nie do­trzeć. W ten sposób dochodzimy do pytania, co mogło spowodować, że gwiazdy zaczęły się świecić.

Dyskusje na temat początku wszechświata rozpoczęły się, rzecz jas­na, znacznie wcześniej. Wedle wielu pradawnych kosmologii i zgodnie z tradycją judeo-chrześcijańsko-muzułmańską wszechświat powstał w określonej chwili w niezbyt odległej przeszłości. Jednym z argumen­tów za takim początkiem było przeświadczenie, że do wyjaśnienia eg­zystencji wszechświata konieczna jest “pierwsza przyczyna". (We wszechświecie każde zdarzenie można wyjaśnić, podając za jego przy­czynę inne, wcześniejsze zdarzenie, ale istnienie samego wszechświata można w ten sposób wyjaśnić tylko wtedy, jeśli miał on jakiś początek). Inny argument przedstawił św. Augustyn w swej książce Państwo Boże. Wskazał on, że nasza cywilizacja rozwija się, a my pamiętamy, kto czego dokonał i komu zawdzięczamy różne pomysły techniczne. Wobec tego ludzie, i zapewne też i wszechświat, nie istnieją prawdopodobnie zbyt długo. Zgodnie z Księgą Rodzaju św. Augustyn przyjmował, iż wszechświat stworzony został mniej więcej 5000 lat przed narodzeniem Chrystusa. (Warto zwrócić uwagę, że ta data nie jest zbyt odległa od przyjmowanej dziś daty końca ostatniej epoki lodowcowej [10 000 lat przed narodzeniem Chrystusa], kiedy to, zdaniem archeologów, zaczęła się naprawdę cywilizacja ludzka).

Arystoteles i inni greccy filozofowie nie lubili koncepcji stworzenia wszechświata, ponieważ nadmiernie pachniała im ona boską interwen­cją. Wierzyli raczej, że ludzie i świat istnieli zawsze, zawsze też istnieć będą. Ze wspomnianym, rozważanym już przez nich argumentem o po­stępie cywilizacji antyczni myśliciele radzili sobie, przypominając o cy­klicznych powodziach i innych klęskach, które wielokrotnie sprowa­dzały ludzkość do stanu barbarzyństwa.

Zagadnienia początku wszechświata i jego granic przestrzennych poddał później gruntownej analizie f...

[ Pobierz całość w formacie PDF ]
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • amelia.pev.pl